文章编号: 0258-7025(2010)11-2730-05

CdSe/CdS/ZnS 量子点对体外培养成熟 卵母细胞的侵入性研究

王晓梅¹ 杨坚泰² 许改霞^{3*} 林晓潭¹ 周消清¹ 屈军乐³ 陈思平¹ 牛憨笨³ 「深圳大学医学院,深圳市生物医学工程重点实验室,广东 深圳 518060 ²新加坡南洋理工大学电机与电子工程学院,新加坡 639798 ³深圳大学光电工程学院,广东省/教育部光电子器件与系统重点实验室,广东 深圳 518060

摘要为了研究 CdSe/CdS/ZnS 荧光量子点的生殖毒性,通过建立雌性昆明小鼠卵母细胞体外培养成熟体系,将量子点加入到卵母细胞培养液,使其浓度为 28.90 nmol/L,于 37 ℃,体积分数为 5%的 CO₂ 和饱和湿度下分别培养 4,8 和 20 h, 观察卵母细胞形态并在相差荧光显微镜下拍照统计。实验结果表明,在该剂量量子点作用下,随培养时间延长,进入颗粒 细胞的量子点增加,并累积于细胞膜附近,但未发现量子点进入卵母细胞内部,激光共聚焦荧光显微镜的高分辨率层析图 证明了该结论。在该剂量量子点作用 20 h 后,量子点虽未进入卵母细胞,但卵母细胞的成熟率显著下降。 关键词 生物光学;量子点;卵母细胞;体外培养成熟;侵入性;生殖毒性 中图分类号 Q631 文献标识码 A doi: 10.3788/CJL20103711.2730

Invasion of CdSe/CdS/ZnS Quantum Dots for Oocytes in Vitro Maturation

Wang Xiaomei¹ Yong Ken-Tye² Xu Gaixia³ Lin Xiaotan¹ Zhou Xiaoqing¹ Qu Junle³ Chen Siping¹ Niu Hanben³

¹ Key Laboratory of Biomedical Engineering of Shenzhen, College of Medicine, Shenzhen University, Shenzhen, Guangdong 518060, China

² School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore

³ Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education / Guangdong Province,

College of Optoelectronics Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China

Abstract The Kunning mice immatured oocytes in vitro maturation culture system are established to investigate the reproductive toxicity of CdSe/CdS/ZnS quantum dots (QDs). QDs stock solution is added into oocyte culture medium at a final concentration of 28.90 nmol/L. Then, QDs and oocytes are co-cultured at 37 $^{\circ}$ C, 5% CO₂ for 4, 8 and 20 h, respectively. The morphological information of oocytes are observed and analyzed under phase-contrast fluorescence microscope. The results demonstrate that QDs enter cumulus cells and accumulate with co-culture time. QDs can not penetrate oocytes zona pellucida, which is confirmed by laser scanning confocal microscope with high spatial resolution. After being treated for 20 h and being rejected by oocytes, QDs decrease the ratio of oocyte in vitro maturation dramatically.

Key words biotechnology; quantum dot; oocytes; in vitro maturation; invasion; reproductive toxicity

作者简介: 王晓梅(1967—), 女, 博士, 教授, 主要从事生殖发育及放射医学等方面的研究。E-mail: xmwang@szu. edu. cn

*通信联系人。E-mail: xugaixia@szu.edu.cn

收稿日期: 2010-07-01; 收到修改稿日期: 2010-07-29

基金项目:国家自然科学基金(30900335)、广东省自然科学基金(2008078)和广东省高等学校科技创新团队项目 (06CXTD009)资助课题。

1 引 言

随着纳米科学和分子生物学的迅速发展,纳米 技术和生物分子靶向技术相结合,使人类有可能在 分子水平选择性修复发生突变的疾病细胞^[1~4],其 基本原理是:纳米尺度的颗粒[如量子点(QDs)、氧 化铁纳米晶体、金纳米颗粒等]具有块材料所不具备 的特殊结构、光学或电磁特点^[5~7]。当与疾病靶向 配体相连时,可以靶向定位到疾病特异性蛋白,并在 病症部位发生富集。在 3~50 nm 范围,纳米颗粒 具有很大的比表面积,可在其表面修饰功能基团,与 多种用于诊断(如光学、放射线及电磁成像)和治疗 (抗癌、抗艾滋病药物)的分子结合形成共轭物。因 此,使用纳米颗粒可以在细胞甚至分子水平探测诱 发疾病的基因缺失、细胞功能异常等,并通过临床介 入手段在它们发展之前就进行修正,达到治疗和诊 断目的^[8~10]。

在这些研究中,应用最广泛的纳米颗粒是 QDs,也称半导体纳米微晶体,是一种由 II-VI 或 III-V 族元素组成的纳米颗粒,目前应用较多的 QDs 是以 CdSe, CdTe 等为核, ZnS, ZnSe, ZnTe 等 为壳的核/壳结构的纳米颗粒。由于粒径很小(2~ 10 nm), QDs 内部电子在各方向上的运动都受到局 限,所以量子局限效应特别显著,导致类似原子的不 连续电子能阶结构。与传统的有机染料和荧光蛋白 相比,QDs优势明显:发射光谱窄、吸收光谱宽、荧 光强度高、稳定性好、抗光漂白性好和荧光寿命长 等^[11]。1998 年美国 California 大学 Alivisatos 小组 和 Emory 大学的 Nie 小组^[12,13]在同一期《科学》期 刊上发表论文,第一次将 QDs 引入生物医学领域, 随后,QDs 被广泛应用于细胞标记、药物运输、靶分 子追踪、脱氧核糖核酸(DNA)编码识别、多色多分 子成像和肿瘤活体成像等方面,为科研人员提供了 最直观的诊断和治疗方法^[14,15]。

随着 QDs 在生物医学领域的广泛应用,纳米颗 粒的环境毒性和生物毒性也越来越受到人们的关 注^[16]。尽管 QDs 用做生物标记的量可能远小于毒 理学实验染毒的剂量,但由于 QDs 结构的多样性和 生物样品的复杂性,使人们对所得数据难以综合比 较和分析,无法对 QDs 的毒性以及毒性产生机理给 出准确的评价。QDs 的长期毒性和短期毒性对生 物体的行为干扰有何不同? QDs 的应用是否会影 响后代的生殖发育及其遗传特性? QDs 最终是否 可以实现安全的临床应用? 这一系列的问题的回答 都需要深入开展 QDs 的毒性研究。 本文以卵母细胞为研究对象,建立卵母细胞体外 培养成熟体系,将 CdSe/CdS/ZnS 双壳型 QDs 加入 该体系,利用相差显微镜和共聚焦显微镜对结果进行 观察和统计,从细胞层面研究 QDs 对体外培养成熟 过程中卵母细胞的侵入性及其对卵母细胞成熟率的 影响,进而为 QDs 的临床应用提供生物安全佐证。

2 材料与方法

2.1 试剂

孕马血清促性腺激素(PMSG)与人绒毛膜促性 腺激素(HCG)为宁波市激素制品有限公司产品;胎牛 血清(FBS)为上海生工生物工程有限公司产品;细胞 培养基 M2, M16, 矿物油, 羟乙基呱嗪乙硫磺酸 (HEPES),透明质酸酶为 Sigma 公司(St. Louis, MO, USA)产品。所有试剂未进行进一步纯化处理。

2.2 培养基

卵母细胞分离培养液成分:α-MEM+5% FBS+ 200IU•mL⁻¹青霉素+200IU•mL⁻¹链霉素+20 mmol• L⁻¹ HEPES,其中 5%为体积分数,IU 为国际单位。卵 母细胞收集培养液为 M2。

卵母细胞体外成熟培养液成分:M16 和 TyH (Toyoda)。

2.3 未成熟卵母细胞体外培养成熟技术

健康 4~6 周龄无特定病原体(SPF)级雌性昆明 小白鼠(以下简称 KM 小鼠)由广东省医学动物实验 中心提供(动物质量合格证 2005A010)。颗粒饲料喂 养每只 10~20 g/d,自由饮水,动物房温度 18 ℃~ 25 ℃,湿度 50%~70%。每只鼠腹腔注射 10IU PMSG 48 h后,脱臼处死取卵巢,体视显微镜下刺破 卵巢,挑选未成熟卵母细胞,在培养液滴中洗 3 次后, 转移到事先预热的培养液滴中,在 37 ℃,体积分数为 5%的 CO₂ 和饱和湿度下体外成熟培养 20 h。

2.4 CdSe/CdS/ZnS QDs 制备

实验中所用 QDs 是在 CdSe 的核上生长双壳 CdS/ZnS,详细制备过程参考文献[17~19]。

简单来讲,将 Cd, Zn 和 S 按摩尔比 1:3:4 (0.5mmol Cd,1.5 mmol Zn, 2 mmol S)混合置于 10 mL 280 ℃的油酸中反应。由于 CdSe 与 CdS 的 晶格匹配较 CdSe 与 ZnS 的好, CdS 优先生长在 CdSe QDs 的表面, CdS 层可以使 ZnS 更紧密地包 裹在核上,外壳是均匀外延生长的,最终会完全包覆 CdSe 核。加入乙醇并离心,可以将 QDs 分离出来, QDs 沉淀物可以在有机溶剂中重新分散。采用了 Jiang 等^[20]的方法完成对 QDs 的水相转换:首先用 中

光

水相相容性表面活化剂巯基十一酸(MUA)替换存 在于 QDs 表面的憎水性表面分子,然后将其溶解于 二甲基亚砜(DMSO);接下来,赖氨酸被交联到 MUA 的羧基,在 QDs 外围形成一个有机壳膜。这 种赖氨酸包裹的 QDs 可以作为一种多功能平台,与 生物分子共轭耦联。

2.5 主要仪器

实验中使用的主要仪器有: CO₂ 培养箱 (QWJ700SVBA,美国 CellStar 公司);荧光分光光 度计(LS-45,美国 PerkinElmer 公司);倒置相差荧 光显微镜(BH2-RFL-T3,日本 Olympus 公司);激 光扫描共聚焦显微镜(TCSPC2,德国 Leica 公司)。

3 结果与讨论

3.1 CdSe/CdS/ZnS 的光谱特性

QDs 为赖氨酸包裹的 CdSe/CdS/ZnS 水溶性 QDs,直径约为 6.2 nm,荧光的发射谱为约 645 nm 的红光,如图 1 所示。

图 1 CdSe/CdS/ZnS QDs 的光谱特性 Fig. 1 Spectrum of CdSe/CdS/ZnS QDs

3.2 体外培养卵母细胞体系的建立

将取出的卵母细胞在相差显微镜下拍照,观察 不同时间正常卵母细胞发育及成熟卵母细胞的形态。发现大部分刚取出的未成熟卵母细胞外面包裹 2~3 层颗粒细胞,如图 2(a)所示。培养 20 h 后,用 透明质酸酶去除卵丘细胞后,清楚地看到卵母细胞 没有发生生发泡破裂(GVBD),如图 2(b)所示。延 长培养时间,卵母细胞会进入 GVBD 期[图 2(c)], 最终排出第一极体(fPB)[图 2(d)],此时卵母细胞 的尺寸和体内发育成熟的卵母细胞的尺寸与形态完 全一致,该结果表明,昆明小鼠的未成熟卵母细胞可 以在体外正常发育成熟,并排出 fPB。

3.3 QDs 的侵入性

图 3 为从 KM 小鼠卵巢分离出的未成熟卵母

- 图 2 卵母细胞成熟前后变化。(a)未成熟卵母细胞,(b) 培养 20 h 后卵母细胞,(c)卵母细胞发生 GVBD, (d)卵母细胞发生 GVBD,并排出了 fPB,发育成熟
- Fig. 2 Simple maturation processes of oocytes. oocytes
 (a) dissected from ovary and immatured, (b) still immatured after being cultured in vitro for 20 h,
 (c) GVBD, (d) fPB, mature

图 3 QDs 对卵母细胞的侵入性 Fig. 3 Invasion of QDs for oocytes in vitro 细胞经 QDs 作用(实验组,左侧一列)和经普通培养 液作用(对照组,右侧一列)不同时间(4,8 和 20 h)

后,由共聚焦显微镜拍摄到的显微图。可见,从形态 和尺寸上来看,实验组和对照组卵母细胞差别不大, 但作用4h后,实验组的卵母细胞就与颗粒细胞分 离,作用20h后,在卵母细胞周围甚至看不到颗粒 细胞;而对照组的颗粒细胞则一直包裹在卵母细胞 周围;此外,QDs主要富集在颗粒细胞中,随培养时 间的延长,进入颗粒细胞的 QDs 增加,而卵母细胞 中则无 QDs,可推测,QDs 与未成熟卵母细胞共培 养时,QDs 主要被包裹在卵母细胞周围的颗粒细胞 吞噬,而未进入卵母细胞内。

结合卵母细胞的生理结构和激光共聚焦扫描显 微镜的结果,可以认为,颗粒细胞、透明带和卵母细 胞膜在卵母细胞外形成多重保护屏障,阻挡 QDs 进 入卵母细胞内。大量的颗粒细胞包裹在卵母细胞周 围,而修饰了赖氨酸的 QDs 容易被颗粒细胞吞噬, 因此 QDs 在颗粒细胞层遇到了第一层阻挡;透明带 是卵母细胞周围的一层特殊结构,具有强烈的排斥 外侵入物的特性,使得 QDs 很难穿透过去;而卵母 细胞的细胞膜,则是它的最后一条防线,将外源性物 质拒绝在外。

3.4 QDs 对卵母细胞成熟率的影响

选用状态良好的未成熟卵母细胞[如图 2(a)] 进行体外培养,在 28.9 nmol/L 浓度 QDs 下培养 20 h后,对卵母细胞的成熟率进行了计算。

$$R_{\rm M} = \frac{N_{\rm M}}{N_{\rm T}} \times 100\%, \qquad (1)$$

式中 $R_{\rm M}$ 是成熟率, $N_{\rm M}$ 是成熟卵数目, $N_{\rm T}$ 是总的 体外培养的卵数目。成熟卵是指卵母细胞经 HCG 刺激发生 GVBD, 最后排出 fPB 的卵。图 4 给出了 QDs 对体外培养卵母细胞成熟率影响的统计结果, 其中对照组为无 QDs 处理的卵母细胞的体外成熟 率(n = 265), 实验组为浓度为 28.90 nmol/L 的 QDs 处理过的卵母细胞体外成熟率(n = 167)。

虽然 QDs 未进入卵母细胞,但由图 4 可见,卵 母细胞的成熟率明显下降,根据卵母细胞的生理结 构和功能,分析可能的原因有 3 点:1)颗粒细胞负责 卵母细胞的给养和代谢,大量外源性的 QDs 被颗粒 细胞吞噬,必然造成颗粒细胞的功能发生阻滞或异 常,从而引起卵母细胞的发育异常或停滞;2) QDs 具有巨大的比表面积,有很强的吸附性,进入卵母细 胞体外培养成熟体系后,势必改变细胞的渗透平衡, 从而减缓甚至阻止了卵母细胞的成熟进程。3)在该 浓度 QDs 作用下,虽然未观察到 QDs 进入卵母细 胞,但作用 20 h后,可能有很少量的 QDs 由于表面 晶格缺陷,发生重金属泄漏,从而造成卵母细胞发育 停止。基于这一推论,认为 QDs 的表面修饰对于降 低 QDs 生物毒性具有重要作用,如果用生物相容性 膜将 QDs 包裹,将可能减少 QDs 在生物环境中泄 漏重金属的可能,接下来将从这方面入手,开展 QDs 表面包覆材料的生殖毒性研究。

图 4 QDs 对体外培养卵母细胞成熟率的影响 Fig. 4 Effect of QDs on oocytes maturation rate cultured in vitro

4 结 论

从目前 QDs 的应用和发展趋势来看,在未来的 5~10 年里, QDs 必将渗透到生物医学基础研究领域 的各个方面,并在临床诊断发挥作用。而在此之前, 首先要研究的问题就是:QDs 本身是否安全以及如何 安全使用 QDs? 免疫毒性、神经毒性、生殖毒性等都 是不容回避的难题。这里以生殖影响的最终靶 点——卵母细胞为研究对象,建立卵母细胞体外培养 成熟体系,并在该体系上研究 QDs 在细胞层面的生 殖毒性。实验结果表明,在浓度为 28.9 nmol/L QDs 作用下,随培养时间延长,进入颗粒细胞的 QDs 增 加,并累积于颗粒细胞膜附近,但未发现 QDs 进入卵 母细胞内部,激光共聚焦荧光显微镜的高分辨率层析 图证明了该结论。在该剂量 QDs 作用 20 h 后,QDs 虽未进入卵母细胞,但卵母细胞的成熟率为 30.54%, 与对照组(65.28%)相比,发生显著下降。

然而,QDs 是否能进入活体动物卵巢,是否影 响卵母细胞成熟以及是否会影响卵母细胞的激素水 平,是研究 QDs 生殖毒性在活体小动物、细胞及分 子 3 个层面上的问题,是全面系统把握 QDs 生殖毒 性作用机理的 3 个方面,这里仅从细胞水平进行了 研究,未来将进一步开展动物实验,并结合生化检测 手段分析激素水平。

参考文献

中

molecular trojan horses [J]. Nature Reviews Drug Discovery, 2002, 1(2): 131~139

- 2 S. Nie, Y. Xing, G. J. Kim *et al.*. Nanotechnology applications in cancer[J]. Annual Review of Biomedical Engineering, 2007, 9(12): 257~288
- 3 Yao Cuiping, Zhang Zhenxi. Influence of laser parameters on permeability of gold nanaoparticles targeting cells [J]. Acta Optica Sinica, 2009, 29(6): 1609~1615 姚翠萍,张镇西. 激光参数对纳米金靶向细胞膜通透性的影响
- 4 Ou Zhongmin, Wu Baoyan, Xing Da. A novel cancer-targeting probe based on integrin α_vβ₃ monoclonal antibody labeled carbon nanotubes[J]. Acta Optica Sinica, 2009, 29(s1): 181~185 欧忠敏,吴宝艳,邢 达. 基于功能化碳纳米管新型肿瘤靶向探 针的研究[J]. 光学学报, 2009, 29(s1): 181~185
- 5 Liu Juanyi, Yang Huan, Luo Xiangang *et al.*. Investigation of localized surface plasmons resonance properties of metal composition nanoparticles[J]. *Acta Optica Sinica*, 2010, **30**(4): 1092~1095

刘娟意,杨 欢,罗先刚等.金属复合纳米粒子的局域表面等离子体特性研究[J].光学学报,2010,**30**(4):1092~1095

- 6 Zhou Feifan, Xing Da, Song Sheng *et al.*. Single-walled carbon nanotubes enhance near-infrared region photothermal therapy[J]. *Chinese J. Lasers*, 2009, **36**(10): 2676~2679 周非凡,邢 达,宋 盛等. 单壁碳纳米管增强近红外区激光热 疗效果[J]. 中国激光, 2009, **36**(10): 2676~2679
- 7 Zhao Lilong, Wu Feng, Tian Wei et al.. Optical nonlinear properties of CdSeS quantum dot[J]. Acta Optica Sinica, 2009, 29(5): 1332~1335

赵立龙,吴 峰,田 玮等. CdSeS 量子点的光学非线性特性 [J]. 光学学报,2009,29(5):1332~1335

- 8 I. L. Medintz, H. T. Uyeda, E. R. Goldman *et al.*. Quantum dot bioconjugates for imaging, labelling and sensing[J]. *Nature Materials*, 2005, 4(6): 435~446
- 9 L. An-Hui, E. L. Salabas, S. Ferdi. Magnetic nanoparticles: synthesis, protection, functionalization, and application [J]. Angewandte Chemie International Edition, 2007, 46 (8):

 $1222 \sim 1244$

- 10 G. T. Alexander, X. Huan, C. Donna *et al.*. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting[J]. *J. Amer. Chem. Soc.*, 2003, **125**(16): 4700~4701
- 11 M. E. Akerman, W. C. Chan, P. Laakkonen *et al.*. Nanocrystal targeting in vivo [J]. *PNAS*, 2002, **99** (20): 12617~12621
- 12 M. Jr. Bruchez, M. Moronne, P. Gin *et al.*. Semiconductor nanocrystals as fluorescent biological labels[J]. *Science*, 1998, 281(5385): 2013~2016
- 13 W. C. Chan, S. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281(5385): 2016~2018
- 14 X. Michalet, F. F. Pinaud, L. A. Bentolila *et al.*. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. *Science*, 2005, **307**(5709): 538~544
- 15 X. Gao, Y. Cui, R. M. Levenson *et al.*. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. *Nature Biotechnology*, 2004, **22**(8): 969~976
- 16 K. T. Yong, I. Roy, H. Ding *et al.*. Biocompatible nearinfrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications[J]. *Small*, 5(17): 1997~2004
- 17 L. Manna, E. C. Scher, L. S. Li *et al.*. Epital growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods[J]. J. Amer. Chem. Soc., 2002, **124**: 7136~ 7145
- 18 L. Qu, W. W. Yu, X. Peng. In situ observation of the nucleation and growth of CdSe nanocrystals[J]. Nano Letters, 2004, 4(3): 465~469
- 19 J. Qian, K. T. Yong, I. Roy *et al.*. Imaging pancreatic cancer using surface-functionalized quantum dots[J]. *J. Phys. Chem. B*, 2007, **111**(25): 6969~6972
- 20 W. Jiang, S. Mardyani, H. Fischer *et al.*. Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots [J]. *Chemistry of Materials*, 2006, 18 (4): 872~878